

Cliente: J. Frankenberg

Fecha: 02/08/23

AGUAS RESIDUALES

Parámetros	Metodo/equipo	Filtrante	Norma	Unidades
Alcalinidad	Hach 8221	140	-	mg/L
Demanda bioquímica de oxígeno (DBO ₅)	-	90	50	mg/L
Demanda química de oxígeno (DQO)	Hach 8000	282	200	mg/L
PH	Electrometria	7.84	6.5-9.0	
Coliformes totales	simplate	282,000	2500	NMP/100mL
Grasas y aceites		0.295	Ausente	mg/L
Coliformes fecales	simplate	43260	500	NMP/100mL
Cloruros	Hach 8113	23		mg/L
Nitrógeno amoniacal	Hach 10031	160	-	mg/L
Fósforo total (Ptotal)	Hach 8190	39.4	5	mg/L
Color Pt/Co	Hach 8025	510	-	Unidad Pt/Co
Oxigeno disuelto	Electrometria	3.2	8	mg/L
Solidos suspendidos	Hach 8006	257	150	mg/L

Los métodos utilizados para la realización de estos análisis están homologado y contenidos en la edición 21 del standard Methods for the Examination of Water and Wastewater de la APHA. Adaptado Hach.

Parametros Referenciados por la Norma Ambiental Sobre Calidad de Agua y Control de Descarga. Tabla A-2. Referencia De Descarga al Subsuelo y Alcantarillado Pág. 46 y 47.Los valores están por encima de los límites permisibles. Es necesario adecuar la cama séptica para mitigar los impactos negativos.

Arismendis Gómez, MSc. Consultor Ambiental 07-390

Enc.Laboratorio

Aris Mendis Gómez M.Sc. 001–0225030–5

Consultor Ambiental Independiente 07-390

Cliente: J. Frankenberg Fecha: 02/08/23

Informe sobre monitoreo de inmisiones de partículas suspendidas PM-10 y PM-2.5 en las operaciones de la empresa J. Frankenberg

Después de hacer una inspección interna en la planta de producción para la ubicación del punto de monitoreo, para más adelante hacer el muestreo correspondiente, llegamos a la conclusión que era necesario ubicar los focos de emisión.

Las partículas capaces de penetrar hasta el sistema respiratorio inferior son aquellas cuyo tamaño está entre 0.1 y 1.0µm, donde pasan a los alvéolos pulmonares, lugar donde se produce el intercambio de oxígeno (O₂) por dióxido de carbono (CO₂) generando daños al sistema respiratorio.

Las partículas de mayor tamaño también afectar la vegetación y otros materiales a través de las corrientes de aire.

Efectos en la salud.

Con respecto a la disposición y evacuación de los aerosoles inhalados en el tracto respiratorio, deben considerarse tres regiones:

Extra toráxico: las vías respiratorias que se extienden desde la nariz hasta la epiglotis y la laringe hasta la entrada de la tráquea. La boca se incluye en esta región durante la respiración oro-nasal.

Traqueo bronquial: los conductos respiratorios primarios de los pulmones, desde la tráquea hasta los bronquiolos terminales. La porción del tracto respiratorio que contiene epitelio ciliado.

Pulmonar: las vías parénquimales de los pulmones, incluyendo los bronquiolos, los ductos alvéolos (la región de intercambio de aire).

Los mecanismos de deposición de las partículas en el tracto respiratorio son: impactación, sedimentación, difusión, intercepción y precipitación

electrostática. En la mayoría de los casos, solamente son importantes la impactación, la sedimentación y la difusión.

Cada uno de los mecanismos para la deposición de las partículas sigue un patrón diferente. La impactación produce durante la inspiración puntos críticos de deposición en la bifurcación de los grandes conductos.

La sedimentación gravitacional ocasiona una deposición relativamente uniforme en los bronquios pequeños, los bronquiolos y los espacios alveolares, en donde los conductos son pequeños y la velocidad del aire es baja. Mediante este mecanismo se depositan partículas de aproximadamente 0.5µm de diámetro.

La deposición difusional es importante en los conductos más pequeños y los alvéolos, en donde se depositan partículas menores de 0.5µm de diámetro. Estas partículas semicrometricas en el aire, siguen un movimiento al azar, causado por el impacto con las moléculas del aire. Este movimiento browniano se incrementa con la disminución del diámetro de las partículas.

Monitoreo de material Particulado

Parametros	Punto 1 Entrada	Punto 2 planta produccion	Norma(µg/Nm³)
PM-10	234	210	150
PM-2.5	75	72	65
Fecha medición	27 de Junio, 2023	27de julio 2023	

Método de muestreo: Mini-vol Método de análisis: Gravimetría

Para la comparación de los resultados se utilizó la Norma Ambiental de Calidad del Aire y Control de Emisiones tab 3.1 pag 14. Los valores PM-10 están por encima de los límites establecidos por la norma.

Arismendis Gómez,MSc.Consultor Ambiental 07-390